Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.more » « less
-
Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.more » « less
An official website of the United States government
